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We discuss an interplay between the Fermi-liquid �FL� theory and diagrammatic perturbative approach to
interacting Fermi systems. In the FL theory for Galilean-invariant systems, mass renormalization m� /m comes
exclusively from fermions at the Fermi surface. We show that in a diagrammatic perturbation theory the same
result for m� /m comes from fermions both at and away from the Fermi surface. The equivalence of the FL and
perturbative approaches is based on a particular relation between self-energy contributions from high- and
low-energy fermions. We argue that care has to be exercised in the renormalization-group approach to a FL in
order not to miss the high-energy contribution to m� /m. As particular examples, we discuss m� /m and the
quasiparticle residue Z for two-dimensional and three-dimensional systems with both SU�2� and SU�N� sym-
metries, and with a short-range interaction. We derive an expression for the anisotropic part of the Fermi-liquid
vertex in the large-N limit of the SU�N� case.
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I. INTRODUCTION

Despite its apparent simplicity, the Landau Fermi-liquid
�FL� theory is one of the most nontrivial theories of interact-
ing fermions.1–5 It states that the linewidth of a state near the
Fermi surface �FS� is smaller than its energy so that the
quasiparticle propagator G�� ,p� has a well-defined pole at
�= pF��p�− pF� /m�+O��p�− pF�2, where pF is the Fermi mo-
mentum. It also states that the quasiparticle residue Z and
effective mass m� are expressed in terms of an interaction
vertex ���,��

� �p ,q�, where p��� ,p� and q���� ,q�, with
one of the two “four momenta” on the FS, e.g., p��0,pF�,
where pF��p / �p��pF. �The vertex ���,��

� is obtained
from a fully renormalized, antisymmetrized vertex
���,���p ,q ; p1 ,q1� in the limit of zero momentum- and van-
ishing energy transfer, i.e., for �p1�= �p�, �q1�= �q�, �1→�,
and �1�→��.� Finally, the FL theory states that, for a
Galilean-invariant system �p2 /2m dispersion for a free par-
ticle�, which is the only case considered in this paper, the
effective mass m� is expressed via ���,��

� �p ,q� with both four
momenta on the FS. On the other hand, renormalization of
the quasiparticle residue Z comes from fermions with p= pF
but q, in general, is away from the FS.

Explicitly, for a Galilean-invariant system,1,6

Gp =
Z

� − pF��p� − pF�/m�
, �1.1�

where

1

Z
= 1 −

i

2�
��
� ���,��

� �pF,q��Gq
2��

dD+1q

�2��D+1 , �1.2a�

1

m�
=

1

m
− AD�

��
� ���,��

� �pF,qF�
pF · qF

pF
2 d�q, �1.2b�

�q is the solid angle, AD=Z2kF
D−2 /2�2��D, Gq is the full fer-

mionic propagator, and �Gq
2�� is the product of the two

Green’s functions with the same momenta and infinitesimally
close frequencies. Note that integration in Eq. �1.2b� is only

over d�q, which implies that mass renormalization comes
solely from fermions on the FS. In the field-theoretical lan-
guage, mass renormalization is then a low-energy, universal
phenomenon while a reduction in Z from its bare value of
one is a high-energy, nonuniversal phenomenon.

The effective mass m� and Z factor can also be obtained
by expanding the self-energy 	�� ,
p� to first order in � and

p,

	��,
p� = �� − 
p�	 1

Z
− 1
 − 
p	 m

m�
− 1
 + O��2,
p

2� .

�1.3�

�We define 	 by Gp
−1=�−
p+	�� ,
p� with 
p= �p2

− pF
2� /2m.� As, in practice, the self-energy is obtained via a

diagrammatic perturbation theory, we will refer to this ap-
proach as to “perturbative.” In the earlier days of the FL
theory, perturbative calculations were used as a check of the
general FL relations, e.g., it has been verified7,8 that the val-
ues of m� /m and Z in Eq. �1.3� are the same as in Eqs. �1.2a�
and �1.2b�. However, whether mass renormalization in Eq.
�1.3� comes from low energies, as it does in Eq. �1.2b�, has
not been verified.

In this paper we demonstrate that, in a diagrammatic cal-
culation, mass renormalization is not, in general, a low-
energy phenomenon. A low-energy contribution to m� does,
indeed, exists but there is also another, high-energy contri-
bution. Only the sum of the two contributions reproduces the
Landau formula for the effective mass, Eq. �1.2a�. There are
situations �see below� when the high-energy contribution is
relatively small but, in general, it is of the same order as the
low-energy one.

The reason why low-energy mass renormalization is gen-
erally not the full result in a diagrammatic calculation, can be
traced back to the fact that the building block of diagram-
matics is a nonantisymmetrized interaction potential U��k��
rather than the antisymmetrized vertex function ��. An ex-
pression for �� in terms of U��k�� does contain a high-energy
contribution and, when the self-energy is expressed in terms
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of U��k�� rather than in terms of ��, these high-energy terms
do contribute to the effective mass. When one re-expresses 	
in terms of ��, the high-energy contributions to m� cancel
out in a Galilean-invariant system. When Galilean invariance
is broken, mass renormalization has a contribution from high
energies already in a FL theory.

An issue where mass renormalization comes from is im-
portant for the interpretation of a Galilean-invariant Fermi
liquid as a fixed point of the momentum-space
renormalization-group �RG� transformation.9–11 In the RG
approach, one progressively integrates out high-energy fer-
mions ending up with a renormalized interaction among low-
energy ones. According to Eq. �1.2b�, this interaction is all
one needs to evaluate the effective mass. Our finding that, in
a diagrammatic calculation, m� /m has contributions from
both low- and high-energy fermions implies that care has to
be exercised in applying the RG approach to a FL. Specifi-
cally, we argue that to recover the Landau formula for m� /m,
one also has to take into account that, in the process of RG
flow, the “bare” mass for the low-energy theory changes
from the free-fermion mass m to a different value �mB�. The
difference mB /m−1 comes from high energies. Only the sum
of regular renormalization from m to mB and low-energy
renormalization of mB yields the agreement with the FL
theory.

We further demonstrate that there exists a certain identity
�cf. Eq. �4.1��, which relates the high- and low-energy terms.
This identity involves combinations of fermionic Green’s
functions in particle-hole and particle-particle channels, and
is exact to first order in � and 
p. Adding this identity to the
diagrammatic self-energy 	�� ,
p� does not change O���
and O�
p� terms in 	, i.e., it does not change Z and m� /m
but, at the same time, it transforms the high-energy contribu-
tion into the low-energy one and makes the diagrammatic
self-energy equivalent to the self-energy extracted from the
FL theory.

An interesting example of comparison between the FL
and perturbative approaches is the large-N limit for an
SU�N�-invariant two-dimensional �2D� system with short-
range interaction. The perturbative self-energy in this case is
obtained simply by retaining the random-phase approxima-
tion �RPA� diagrams with maximal number of particle-hole
bubbles at each order in the interaction. It is not enough,
however, to retain only diagrams with a maximal number of
bubbles in order to construct �� because these diagrams con-
tribute only to an isotropic part of �� and, therefore, do not
lead to mass renormalization. We show that the perturbation
theory for an anisotropic part of �� can be resummed to
infinite order in U even for subleading in 1 /N terms and the
resulting expression for m� coincides with that obtained from
the self-energy.

The structure of this paper is as follows. In Sec. II, we
discuss the FL theory and perturbation series for ��. We
briefly discuss the three-dimensional �3D� case and present
the FL expressions for m� /m and Z in 2D with a short-range
interaction �to the best of our knowledge, the result for Z has
not been derived in the prior literature�. In Sec. III, we obtain
the self-energy in the diagrammatic perturbation theory both
in 3D and 2D and identify the low- and high-energy contri-
butions to the effective mass. We show that m� /m ad Z are

indeed the same as in the FL theory but at least part of mass
renormalization comes from high energies. Moreover, we
show that, in 2D, entire mass renormalization to second or-
der in the interaction comes from high energies, if the calcu-
lation is performed by combining internal fermions into
particle-hole pairs, while the high-energy part is twice larger
and of opposite sign to the low-energy part, if internal fer-
mions are combined into particle-particle pairs. In Sec. IV,
we reconcile the two approaches by proving a particular re-
lation between the convolutions of Green’s functions. In Sec.
V we discuss an extension of our results to the SU�N� case
and consider the large N limit. Finally, in Sec. VI we present
our conclusions.

II. FERMI-LIQUID THEORY

A. Pitaevskii-Landau relations

We remind the reader that Eqs. �1.2a� and �1.2b� in the FL
theory are based on the Pitaevskii-Landau relations—the
three identities for the derivatives of the Green’s function,1,6

�Gp
−1

��
=

1

Z
= 1 −

i

2�
��
� ���,��

� �pF,q��Gq
2��

dD+1q

�2��D+1 ,

�2.1�

pF

�Gp
−1

�p
= −

pF
2

m�Z

= −
pF

2

m
+

i

2�
��
� ���,��

k �pF,q�
pF · q

m
�Gq

2�k
dD+1q

�2��D+1 ,

�2.2�

1

Z
= 1 −

i

2�
��
� ���,��

� �pF,q��Gq
2��

pF · q

pF
2

dD+1q

�2��D+1 .

�2.3�

The first two relations originate from particle-number con-
servation while the third relation is a consequence of Gal-
ilean invariance. In Eq. �2.2�, the object �Gq

2�k is the product
of two Green’s functions with the same frequencies and in-
finitesimally close momenta, and ���,��

k is the vertex in the
limit of zero-frequency transfer and vanishing momentum
transfer. The latter is related to ���,��

� by an integral equation

���,��
k �p,q� = ���,��

� �p,q�

−
kF

D−1Z2

vF�2��D�
�,�
� ���,��

� �p,q�����,��
k �q�,q�d�q�.

�2.4�

In addition, �Gq
2�k is related to �Gq

2�� by

�Gq
2�k − �Gq

2�� � �Gq
2 = −

2�iZ2m�

pF
�������q� − pF� .

�2.5�

Note that Eqs. �2.1� and �2.2� contain the integrals over all
intermediate states with momenta q. However, using the ad-
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ditional property of Galilean invariance �Eq. �2.3��, one can
eliminate the high-energy contribution to m� �but not to Z�.
Indeed, substituting Eqs. �2.4� and �2.5� into Eq. �2.2� and
using Eq. �2.3�, one reduces Eq. �2.2� to

pF

�Gp
−1

�p
= −

pF
2

m�Z
= −

pF
2

mZ
+

i

2

pF
2

m�Z


 �
��
� ���,��

� �pF,q��Gq
2pF · q

pF
2

dD+1q

�2��D+1

= −
pF

2

mZ
+

pF
2

Z
AD�

��
� ���,��

� �pF,qF�
pF · qF

pF
2 d�q,

�2.6�

which is equivalent to Eq. �1.2b� for mass renormalization.
We emphasize again that Eq. �1.2b�, which involves only
low-energy fermions, is based not only on particle-number
conservation �Eqs. �2.4� and �2.5�� but also on Eq. �2.3�,
specific to Gallilean-invariant systems.

Combining Eqs. �2.1�, �2.3�, and �2.6�, one can construct
the self-energy to first order in � and 
p as

	FL��,
p� = �� − 
p��−
i

2�
��
� ���,��

� �pF,q�Gq
2 dD+1q

�2��D+1�
+ 
p� i

2Z
�
��
� ���,��

� �pF,q�
pF · q

pF
2 �Gq

2 dD+1q

�2��D+1� .

�2.7�

B. Perturbation theory for ��

The vertex �� can be obtained via a perturbative expan-
sion in U��k��. Diagrams for �� to second order in U��k�� are
presented in Fig. 1. We emphasize that �i� �� is antisymme-
trized vertex and �ii� that the renormalizations in particle-
hole and particle-particle channels are both relevant. Re-
stricting with only the renormalization in the particle-hole
channel, as it was done in, e.g., Ref. 11, leads to incorrect
results.

Assume first that U��k��=const�U �contact interaction�.
In this case,

���,��
� �pF,q�

= �������U + iU2� �GlGq−pF+l + GlGq+pF−l�
dD+1l

�2��D+1�
− �������U + iU2� GlGq+pF−l

dD+1l

�2��D+1� . �2.8�

The first term in Eq. �2.8� is the renormalized interaction
with zero-momentum transfer and the second term is ob-
tained by antisymmetrization. We see that the first �“direct”�
term contains contributions from both the particle-hole and
particle-particle channels while the second �“exchange”�
term contains only a contribution from the particle-particle
channel.

In 3D, explicit expression for �� when both particles are
on the FS �i.e., q=qF� were obtained long time ago �see Refs.
1 and 7�. A similar calculation, for the 2D case, yields12

���,��
� �pF,qF� = ���,��

� ���

=
1

2
�������U +

U2m

2�
ln	cos

�

2

¯�

−
1

2
��� · ����U +

U2m

2�
ln	cos

�

2

 + ¯� ,

�2.9�

where � is the angle between pF and qF and dots stand for
angle-independent U2 terms and terms of higher orders in U.
In deriving Eq. �2.9�, we used a result for the static particle-
particle bubble in 2D

�pp�� = 0, �k� � 2pF� = i� d3l

�2��3GlGk−l

=
m

2�
ln

2pF

�k�
�2.10�

�up to an irrelevant constant�. Note that in 2D, the angular
dependence of �����, which is responsible for mass renor-
malization, comes entirely from the interaction in the
particle-particle channel, i.e., from �pp��=0, �k � �2pF�.
Since the 2D particle-hole bubble �ph�k�= i
d3lGlGl+k /
�2��3 is independent of �k� for �k��2pF, renormalization of
the interaction in the particle-hole channel only adds a con-
stant to U and is, therefore, irrelevant for m�. The formula for
���,��

� �pF ,q� for q is away from the FS is rather complex and
we refrain from presenting it.

C. Effective mass and quasiparticle residue

Substituting �� from Eq. �2.8� into Eqs. �1.2a� and �1.2b�
and evaluating the integrals in 3D, we reproduce the known
results for m� /m �Refs. 7 and 8�,

m�

m
= 1 + 	 8

15

�7 ln 2 − 1�	mUpF

4�2 
2

�2.11�

and Z �Refs. 8 and 13�,

=

p p

− + −Γω

+ − − 2x

p p

=

q p p

p p p

q q q

qqqqq q q

p

p

p

q

q

p

p

q

q

q

q

p

FIG. 1. First- and second-order diagrams for the Fermi-liquid
vertex ���,��

� �p ,q�. The initial four momenta p and q are associated
with spin projections � and �, respectively. The final four momenta
p and q are associated with spin projections � and �, respectively.
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Z = 1 − 8 ln 2	mUpF

4�2 
2

. �2.12�

In 2D, Eq. �2.9� immediately gives12

m�

m
= 1 +

1

2
	mU

2�

2

�2.13�

while for Z we obtain after numerical integration of
���,��

� �pF ,q� instead of Eq. �2.9�

Z � 1 − C	mU

2�

2

, �2.14�

where C=0.6931¯. To high numerical accuracy, C is equal
to ln 2 but we did not attempt to prove this analytically. We
remind that, in the FL formulation, m� /m comes exclusively
from the interaction between particles on the FS.

Momentum-dependent interaction

For a momentum-dependent interaction U��k��, expres-
sions for m� /m and Z are generally more complex. Mass
renormalization now occurs already at the first order in
U��q��. In 3D,

m�

m
= 1 −

mpF

16�2�
0

2

dzz�U�pF�2 − z�1/2� − U�pF�2 + z�1/2��

+ O�U2� . �2.15�

Renormalization of Z still occurs beginning from the second
order in U��k��.

III. PERTURBATION THEORY FOR THE SELF-ENERGY

We now discuss how m� /m and Z occur in the diagram-
matic perturbation theory. Again, we consider first the case
of a constant interaction U; a momentum-dependent interac-
tion will be discussed later. The first-order term in the self-
energy �Fig. 2�a�� is irrelevant in this case and we focus on
the second-order diagrams in Fig. 2. Diagram �b� just shifts
the chemical potential and is also irrelevant, so we need to

consider only diagrams �c� and �d�. Relabeling the fermionic
momenta, it is easy to see that, for a constant U, diagram �d�
is equal to −1 /2 of diagram �c�, so there is essentially one
second-order diagram to be considered, e.g., diagram �c�.
This diagram contains three Green’s functions, two of which
share a common internal momentum. Labeling the momenta
as shown in diagram �c� and integrating over the internal
four-momentum l, we end up with a particle-hole bubble.
Alternatively, labeling the momenta as shown in diagram �e�
and integrating over l, we end up with a particle-particle
bubble.

We start with combining two internal fermions into a
particle-hole bubble; the particle-particle combination is dis-
cussed in Sec. III B 2. Subtracting from the particle-hole
form of 	�� ,
p� its value at �=0, 
p=0, we find

	pert��,
p� − 	�0,0� = − U2� GlGk−pF+l�Gk+
 − Gk�dlk,

�3.1�

where dlk�dD+1ldD+1k / �2��2�D+1� and


 = 	�,

p

vFpF
pF
 �3.2�

is the �small� external four-momentum. The self-energy can
be further split into two parts as

	pert��,
p� − 	�0,0� = �	1��,
p� + �	2��,
p� , �3.3�

where

�	1��,
p� = U2� GlGk−pF+lGq
2	� − 
p

pF · k

pF
2 
dlk,

�3.4a�

�	2��,
p� = − U2��
GlGk−pF+l�Gk−
 − Gk�dlk. �3.4b�

The difference between the two parts is as follows. In the
first part, the integrand was expanded to first order in � and

p. This is justified if typical internal energies remain finite
when � ,
p→0. This is a regular, high-energy contribution to
the self-energy coming from fermions not confined to the FS.
The second term is an anomalous contribution from internal
energies of order � and 
p, which cannot be obtained by an
expansion of 	pert in the external energies. This second term
is a low-energy contribution �to emphasize this, we put a
prime on the integral for this part�.

A. 3D case

Evaluating the integrals in Eqs. �3.4a� and �3.4b� for the
3D case, we find that both contributions are finite, namely,

�	1��,
p� = 8 ln 2	mUpF

4�2 
2

�� − 
p� +
4

3

p�4 ln 2 − 1�


	mUpF

4�2 
2

,

c)

a)

d)

b)

e)

k−p

p

k−l

l

l+k

l

p p+k

FIG. 2. First- and second-order diagrams for the fermionic self-
energy 	pert�� ,
p�. For a momentum-independent interaction
U��q��=U, only second- and higher order diagrams renormalize the
mass and Z. For a momentum-dependent interaction, mass renor-
malization starts already at the first order. Diagram �e� is the same
as �c�, except for internal fermions are combined into a particle-
particle rather than a particle-hole pair.
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�	2��,
p� = −
4

5

p�2 ln 2 − 1�	mUpF

4�2 
2

. �3.5�

Adding up two parts and casting the result into the form of
Eq. �1.3�, we recover the Galitskii’s result �Ref. 8�,

	pert��,
p� − 	�0,0� = 	mUpF

4�2 
2�8 ln 2�� − 
p�

+
8

15
�7 ln 2 − 1�
p� . �3.6�

This self-energy indeed produces the same m� /m and Z as in
the FL theory, Eqs. �2.12� and �2.11�, We see, however, that
mass renormalization—determined by a stand-alone 
p term
in the self-energy—comes from both the high- and low-
energy parts of 	pert. Only the sum of the two contributions
recovers the FL formula for m� /m. On the other hand, renor-
malization of Z comes only from �	1, i.e., from high ener-
gies.

B. 2D case

The difference between the FL and diagrammatic ap-
proaches becomes even more obvious in 2D. Since, to the
best of our knowledge, the Z factor for a 2D Fermi liquid
with a short-range interaction has not been calculated before,
we consider the 2D case in more detail. We also use the 2D
case as an example to show that an interplay between high-
energy and low-energy contributions to the effective mass
�but not the full result� depends on whether the self-energy is
calculated via particle-hole or particle-particle bubbles.

1. Perturbative self-energy via particle-hole bubble

The calculation of the perturbative self-energy via a
particle-hole bubble is based on Eqs. �3.4a� and �3.4b�. It 2D,
the particle-hole bubble can be found analytically for any �
and �k�,

�ph��,k� = −
m

2�


�1 + i
�2�̃

�k̃2 − k̃4 − �̃2 + ��k̃2 − k̃4 − �̃2�2 − 4�̃2k̃4
� ,

�3.7�

where �̃=2�m / pF
2 and k̃= �k� /2pF. To calculate the regular

part of the self-energy, one needs to know the entire bubble
while the anomalous part is determined only by the static
bubble �ph�0, �k��. Performing the angular integral in �	1
analytically and remaining integrals numerically, and all in-
tegrals in �	2 analytically, we obtain

�	1��,
p� = C	mU

2�

2

�� − 
p� +

p

2
	mU

2�

2

, �3.8a�

�	2��,
p� = 0 �3.8b�

with

C =
1

2�
�

0

�

dx�
0

�

dy
�

�y

�A + �A2 + x2y2

�A2 + x2y2
F�x,y� , �3.9�

A= �x−x2+y2� /2, and

F�x,y� =
y

�A + �A2 + x2y2
− ��x − 1��x − 1

x
. �3.10�

Numerical integration yields, to high accuracy, C
=0.6931¯ =ln 2; same as for the prefactor in Eq. �2.14�.

The reason why �	2=0 in 2D is very simple. This con-
tribution is expressed via a static particle-hole bubble as

�	2��,
p� = i

pU2

2�2vF
�

0

2pF

d�k��ph�� = 0, �k��



1 − �k�2/2pF

2

�1 − ��k�/2pF�2
. �3.11�

As �ph��=0, �k�� is independent of �k� for �k��2pF, the in-
tegral over �k� vanishes. For the same reason, mass renormal-
ization in the FL theory comes only from the particle-particle
part of the vertex in Eq. �2.9�.

Casting the result into the form of Eq. �1.3�, we again
reproduce the FL results for m� /m and Z, Eqs. �2.13� and
�2.14�. However, we see that now m� /m comes solely from
the high-energy part of the self-energy, in an �apparent� con-
tradiction to the FL theory, where it comes from low ener-
gies.

2. Perturbative self-energy via particle-particle bubble

We now show that an interplay between high- and low-
energy contributions to the perturbative self-energy depends
on the way how we obtain it. To demonstrate this, we obtain
the same perturbative self-energy 	pert�� ,
p� as in Eq. �3.8a�
by combining internal fermions into particle-particle rather
than particle-hole pairs. We will see that in this situation
mass renormalization comes from both high and low ener-
gies.

For simplicity, we consider a momentum-independent in-
teraction in 2D and restrict attention to the second order in
U. Labeling the momenta as shown in diagram �e� of Fig. 2,
we obtain for the second-order self-energy

	̃pert��,
p� − 	̃�0,0� = − U2� GlGk+pF−l�Gk−
 − Gk�dlk.

�3.12�

We denote the self-energy obtained in this way as 	̃pert to
distinguish it from the self-energy in the particle-hole form.

As before, we split the difference 	̃pert�� ,
p�− 	̃�0,0� into a
sum of regular and anomalous contributions as

�	̃1��,
p� = U2� GlGk+pF−lGk
2	� − 
p

pF · k

pF
2 
dlk,

�3.13a�
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�	̃2��,
p� = − U2��
GlGk+pF−l�Gk−
 − Gk�dlk.

�3.13b�

The anomalous part �	̃2 is now expressed via a static
particle-particle bubble as

�	̃2��,
p� = −

pU2

2�2vF
�

0

2pF

d�k��pp�� = 0, �k��



1 − �k�2/2pF

2

�1 − ��k�/2pF�2
, �3.14�

where �pp��=0, �k�� is given in Eq. �2.10�. In contrast to Eq.
�3.11�, the integral over �k� now does not vanish and we
obtain

�	̃2��,
p� = −

p

2
	mU

2�

2

. �3.15�

Therefore, in contrast to the particle-hole case, the low-
energy contribution to mass renormalization in the particle-
particle case is finite but opposite in sign to mass renormal-
ization in the FL theory, Eq. �2.13�.

The regular part of self-energy, �	̃1, renormalizes both
the Z factor and effective mass. To evaluate this part of the
self-energy, a static approximation for �pp is not sufficient
and we need a dynamic form of the particle-particle propa-

gator. Re-expressing �	̃1 in Eq. �3.13a� via the particle-
particle polarization bubble and shifting the momentum as
k− pF→k, we obtain

�	̃1��,
p� = U2� �pp��k,k�
��k − 
k−pF

�2


��� − 
p� + 
p	2 −
pF · k

pF
2 
�dk.

�3.16�

We remind that dk=kdkd�kd�k / �2��3. If we approxi-

mated �pp��k ,k� by its static form, �	̃1 would vanish after
integration over �k because of the double pole. The dynamic
�pp��k ,k�, however, has branch cuts in both upper and
lower half planes of �k, which ensures that the frequency
integral is nonzero.

The dynamic polarization bubble is obtained by standard
means and, for �k��2pF, is given by

�pp��k,k� =
m

2�2�
0

�/2

d� ln S���k,k� , �3.17�

where

S���k,k� =
m�k − pF

2 + k2/4

m�k − �k�cos ��pF
2 +

k2

4
sin2 � −

k2

2
cos2 �



pF

2

m�k + �k�cos ��pF
2 −

k2

4
sin2 � +

k2

2
cos2 �

.

�3.18�

For �k��2pF the expression for �pp is more complex but we
do not need it as in this region the pole and branch cut are in
the same half plane of �k and the frequency integral van-
ishes.

Substituting Eq. �3.17� into Eq. �3.16�, evaluating the fre-
quency integral over a half plane where there is no double
pole �this requires separate considerations for �k�
�2pF cos �k and �k��2pF cos �k�, and evaluating the re-
maining integrals over �, �k, and �k� numerically, we obtain

�	̃1��,
p� = C	mU

2�

2

�� − 
p� + 
p	mU

2�

2

. �3.19�

where, as before, C=0.6931¯ =ln 2.
The total particle-particle self-energy, given by the sum of

Eqs. �3.15� and �3.19�, is indeed the same as the total
particle-hole self-energy, given by the sum of Eqs. �3.8a� and
�3.8b�, and total mass renormalization is the same as in Eq.
�2.13�. However, we see that mass renormalization now
comes from both high and low energies.

C. Momentum-dependent interaction

For a momentum-dependent interaction U��k��, the differ-
ence between the diagrammatic and FL formulas for the self-
energy is less drastic. In particular, for a weak but
momentum-dependent interaction, mass renormalization to
first order in U��k��, as defined by Eq. �2.15�, comes only
from fermions on the FS.

For completeness, we also present perturbative results for
m� /m and Z for the Coulomb interaction. At small rs, both
m� /m and Z are quasilinear in rs for small rs. In 3D, m� /m
=1− �rs /2���4 /9��1/3ln rs

−1 and Z=1−0.17696rs �Ref. 14�.
In 2D, m� /m=1− �rs /��2�ln rs

−1 �Ref. 14� and Z=1
− �rs /�2��1 /2+1 /�� �Ref. 15�. The case of Coulomb inter-
action is special in that Z comes from fermions in the vicinity
of the FS.

IV. RECONCILIATION OF THE FERMI-LIQUID AND
PERTURBATIVE APPROACHES

We have shown in the previous sections that while mass
renormalization comes from low energies in the FL theory, it
generally contains both high- and low-energy contributions
in a diagrammatic perturbation theory. In Secs. IV A–IV C,
we show how to reconcile the two approaches.

A. Equivalence of the Fermi-liquid and perturbative
approaches for a momentum-independent interaction

To begin, we emphasize that the results for the self-energy
in the FL and perturbative approaches need not to coincide
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identically because 	FL given by Eq. �2.7� is only an expan-
sion of the full self-energy to first order in � and 
p while
	pert given by Eqs. �3.3�, �3.4a�, and �3.4b� contains all or-
ders in � and 
p. However, 	pert to first order in � and 
p
must coincide with 	FL.

Comparing the two self-energies, we see the difference:
while 	FL, expressed via ��, contains both particle-hole and
particles-particle bubbles, 	pert contains only a particle-hole
bubble. We now show that there exists a particular relation
between the combinations of the Green’s functions which
involve particle-hole and particle-particle bubbles, namely,

� �GlGk−pF+l + GlGk+pF−l��Gk−
 − Gk�dkl = 0, �4.1�

where 
 is given by Eq. �3.2�. This relation is valid to first
order in 
 �i.e., in � and 
p� and follows from the identity,
which we have already used implicitly when diagram �c� in
Fig. 2 was replaced by diagram �e�,

� dklGlGk−pF+l�Gk+
 − Gk� =� dklGlGk+pF−l�Gk−
 − Gk� .

�4.2�

The identity in Eq. �4.2� is proven by relabeling the four
momenta, e.g., by relabeling the momenta in both terms in
the second line as k→k− pF+ l+
 and then relabeling k+

→k in the last term. Equation �4.1� follows from Eq. �4.2�
once Gk+
−Gk in the first line of Eq. �4.2� is replaced by
Gk−Gk−
+O�
2�. Adding Eq. �4.1� to 	pert�� ,
p�, we find,
after simple algebra, that it becomes equal to 	FL, i.e., the
expressions for m� /m and Z become exactly the same as in
Fermi-liquid theory. Analyzing further the left-hand side of
Eq. �4.1�, we find that both the particle-particle and particle-
hole terms contain regular �high-energy� and anomalous
�low-energy� contributions. Anomalous contributions contain
only the single-particle dispersion 
p while regular contribu-
tions contain both 
p and � terms. Expanding the regular
contributions to first order in � and 
p and equating the pref-
actors of 
p and � terms, we obtain

�� dkl�GlGk−pF+l + GlGk+pF−l�Gk
2 = 0, �4.3�


p� dkl�GlGk−pF+l + GlGk+pF−l�Gk
2pF · k

pF
2

= − 
p� dkl�GlGk−pF+l + GlGk+pF−l��Gk
2pF · k

pF
2 ,

�4.4�

where �Gk
2, defined by Eq. �2.5�, projects the integral over k

onto the FS. The left- and right-hand sides of Eq. �4.4� are
anomalous �low-energy� and regular �high-energy� contribu-
tions, respectively.

We see from Eq. �4.3� that the addition of Eq. �4.1� to
	pert does not change the result for the � term in a sense that
there is no interplay between high-and low-energy contribu-
tions, and Eq. �4.3� simply adds zero to the high-energy con-
tribution. This explains why the � terms in 	FL and 	pert are

identical. On the other hand, by adding Eq. �4.1� to 	pert we
are changing the interplay between the high- and low-energy
contributions to the 
p terms. The regular contribution from
Eq. �4.4� cancels the 
p term in �	1 while the anomalous
contribution renders �	2 equal to the FL self-energy, Eq.
�2.7�.

B. Momentum-dependent interaction

The results of the previous section can be readily ex-
tended to the case of a momentum-dependent interaction. In
this situation, we obtain, instead of Eqs. �2.8�, �3.4a�, and
�3.4b�,

���,��
� �pF,q� = U�0� + i� dD+1l

�2��D+1U2��pF − l���GlGq−pF+l

+ GlGq+pF−l� − ����U��q − pF��

− i� dD+1l

�2��D+1 ��2U��q − pF�� − 2U��q

− pF��U��pF − l���GlGl+q−pF
− U��pF − l��


U��l − q��GlGq+pF−l��
and �	pert�� ,
p�=	pert�� ,
p�−	pert�0,0�=�	1+�	2 with

�	1��,
p� =� dlq�2GlGk−pF+l�U2��q − pF�� − 2U��pF

− l��U��q − pF��� − GlGq+pF−lU��pF − l��


U��l − q����Gk−
 − Gk� ,

�	2��,
p� = −� dlq�2GlGk−pF+l�U2��q − pF�� − 2U��pF

− l��U���q − pF���� − GlGq+pF−lU��pF − l��


U��l − q���Gq
2	� − 
p

pF · q

pF
2 
 , �4.5�

where we neglected first-order terms.
Comparing the expressions for �� and �	pert, we see that

�� �and, hence, 	FL given by Eq. �2.7�� again contains two
extra terms not present in the diagrammatic self-energy.
These two terms have the same overall factor of U2��pF− l��.
After some rearranging of the momenta in the products of
three fermionic propagators, we obtain an analog of Eq. �4.1�
for a momentum-dependent interaction as

� dqlU
2��pF − l���GlGk−pF+l + GlGq+pF−l��Gk−
 − Gk� .

�4.6�

Adding this expression to �	pert, we find after some algebra
that high-energy contributions to m� /m cancel and, to first
order in � and 
p, 	pert becomes equal to 	FL.
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C. Higher orders of the perturbation theory

So far, we have focused only on the lowest-order pertur-
bation theory. One can show, however, that Eq. �4.6� remains
valid if the bare fermionic propagators are replaced by the
full ones and U��q�� is replaced by a fully renormalized in-
teraction which depends not only on the momentum but also
on frequency. This is so because Eq. �4.6� is proven simply
by rearranging internal four momenta. Next, the full pertur-
bative self-energy is also obtained from the second-order re-
sult, Eq. �4.5�, by dressing the interactions and propagators.
Adding Eq. �4.6� to the full perturbative self-energy, ex-
pressed via the full propagators and full interactions, we im-
mediately recover 	FL simply because the previous proof of
this statement did not rely on the specific forms of G and U.

V. SU(N)-INVARIANT FERMI LIQUID

A. SU(N) vs SU(2)

In this section, we discuss the interplay between the FL-
and perturbation theories for a system of interacting fermions
with a large number of flavors N. Fermi-liquid properties of
such a system were discussed both in terms of RG �Ref. 16�
and pertubation theory for the case of a Coulomb
interaction.17,18 In the limit when the N times a �dimension-
less� coupling constant is larger than one, renormalization of
not only the Z factor but also of the effective mass comes
from energies much higher than the Fermi energy. Based on
the observation, the authors of Ref. 17 argued that an
SU�N�-invariant FL is not of the same type as discussed in
the framework of the Landau theory. We show here that this
is not the case: the FL- and perturbation theories give the
same results for the SU�N�-invariant case as well. To see
this, however, one needs to collect next-to-leading terms in
the large-N expansion of the FL theory, whereas the pertur-
bation theory can be evaluated only to the leading order in
1 /N.

The difference between the large-N expansions for the FL
and perturbation theories is most dramatic for the case of a
momentum-independent interaction in 2D and for brevity we
consider only this case here. In the SU�N� case, each
particle-hole bubble is multiplied by a factor of N. The
second-order self-energy contains two diagrams—�c� and �d�
in Fig. 2—the first of which acquires a factor of N while the
second does not. Consequently, the perturbative effective
mass acquires a factor of N−1 compared to the result in Eq.
�2.13�

m�

m
= 1 +

N − 1

2
	mU

2�

2

� 1 +
N

2
	mU

2�

2

, �5.1�

where the last result applies to the large-N limit. On the other
hand, the only diagram for �� which acquires a factor of
N—diagram �f� in Fig. 1—does not depend on the angle
between the initial fermionic momenta pF and qF because
the static particle-hole bubble is independent of the momen-
tum in 2D for �pF−qF��2pF. Therefore, the leading term in
the 1 /N expansion for �� does not contribute to mass renor-
malization. To resolve this contradiction, one needs to recall
that when deriving the FL result for m� �Eq. �1.2b�� we di-

vided the trace of �� by the number of spin components.
This is the origin of the factor of 2 in the prefactor AD. The
formula for the SU�N� case is obtained from Eq. �1.2b� sim-
ply by replacing 2 in AD by N; in 2D, we have

1

m�
=

1

m
−

Z2

N�2��2�
��
� ���,��

� �pF,qF�
pF · qF

pF
2 d�q.

�5.2�

Diagrams for direct processes �p→p , q→q� enter �� with
a factor of �����,�, which becomes equal to one for �=� and
�=�. Therefore, the trace of the direct contribution to ��

gives a factor of N2 which, upon dividing by an overall factor
of N in Eq. �5.2�, gives an O�N� contribution to m�. To
obtain an O�N� term in m� from the FL theory, one thus
needs to collect all direct O�1� diagrams for ��. On the other
hand, diagrams for exchange processes �p→q , q→p� enter
�� with a factor of ������, which becomes equal to ��� for
�=� and �=�. The trace of the exchange contribution is of
order N, which translates into a subleading, O�1� term in m�.
Therefore, one can neglect exchange processes in �� in the
large-N limit. A physical reason for this simplification is ob-
vious: since the large-N limit is inherently semiclassical, the
Pauli principle becomes irrelevant.

The same conclusion also follows from an identity which

involves the generators T̂ of the SU�N� group16

������ =
1

2 �
a=1

N2−1

T̂��
a T̂��

a +
1

N
������. �5.3�

The delta symbols on the left �right� occur in exchange �di-

rect� contributions to ��, correspondingly. Since T̂a are trace-
less, it follows immediately that the trace of the exchange
contribution to �� is by a factor of N smaller than the trace
of the direct contribution.

Coming back to the second-order �� for arbitrary N, we
need to consider all subleading, O�1� diagrams in Fig. 1.
Diagrams �e� and �g� contain particle-hole bubbles evaluated
at �pF−qF� and, therefore, do not contribute to mass renor-
malization. Direct particle-particle diagram c contributes an
O�N� term to m� while its exchange counterpart d contrib-
utes an O�1�. A combined contribution of diagrams �c� and
�d� is �N−1� times the SU�2� result, which is the same as in
Eq. �5.1�.

In the SU�2� case, the perturbative regime implies that the
interaction is weak in a sense that mU�1. Then mU is the
only parameter in the problem, and Eq. �5.1� is the leading
term in the expansion in this parameter for N=2. In the
SU�N� case with a large number of flavors, there is a non-
perturbation regimen, defined by the conditions 1 /N�Um
�1, where the perturbation theory should and can be re-
summed to infinite order, and Eq. �5.1� is replaced by Eq.
�5.10� below. It is instructive to compare the perturbation
theory with the FL formalism in this case. The subsequent
analysis will be performed in the Matsubara technique at
T=0.
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B. Pertubation theory for the self-energy in the non-
perturbative regime

In the large-N limit, the perturbative self-energy is given
diagrams with a maximal number of the particle-hole
bubbles at each order in U. The sum of such diagrams is
equivalent to a first-order diagram, shown in Fig. 3,

	pert��,
p� =� d2k

�2��2� d�k

2�
G�� + �k,p + k�Ũ��k,k� ,

�5.4�

where the effective interaction is of an RPA form

Ũ��k,k� =
U

1 − NU�ph��k,k�
. �5.5�

As in the SU�2� case, the self-energy can be separated into
anomalous and regular part. The anomalous part is similar to
Eq. �3.11�, except for the second-order effective interaction

U2�ph��k=0,k� is replaced by Ũ��k=0,k�. Still, as
�ph��k=0,k� is independent of �k� for �k��2pF, the integral
over �k� vanishes and the anomalous part of the self-energy
does not renormalize the effective mass.

In the regular part of the self-energy, we assume—and
then justify—that the limit of NUm�1 corresponds to large
momentum transfers: �k�� pF. In this limit, the particle-hole
bubble becomes17

�ph��k,k� = −
pF

2

2�

Ek

�q
2 + Ek

2 , �5.6�

where Ek=k2 /2m. At fixed number density of particles n, the
area of the Fermi surface is inversely proportional to the
number of flavors

pF
2 /4� = n/N . �5.7�

With this normalization, the product NU�ph��k ,k�=

−2nEk / ��k
2+Ek

2� is independent of N. A pole of Ũ in real
frequencies corresponds to the collective �zero-sound� mode
with dispersion �k=�Ek

2 +E0Ek, which interpolates between
soundlike excitations for Ek�E0�2nU and particlelike ex-
citations for Ek�E0. Note that E0 /EF�NUm�1.

According to Eq. �1.3�, mass renormalization is deter-
mined by a stand-alone 
p term in the self-energy. This term
is obtained by expanding the single-particle dispersion in the
argument of the Green’s function in Eq. �5.4� as 
p+k=
p
+
ppF ·k / pF

2 +pF ·k /m+Ek and differentiating the regular
part of the self-energy with respect to the second term in 
p+k
at 
p=�=0. This yields

m

m�
= 1 −� d2k

�2��2� d�k

2�
G�pF + k,�k�Ũ��k,k�

pF · k

pF
2 .

�5.8�

Since, according to our assumption, large �k� control the in-
tegral in Eq. �5.8�, the Ek term in the denominator of Green’s
function is larger than the pF ·k term. Expanding the Green’s
function to first order in pF ·k, integrating over the angle, and
switching from integration over �k� to integration over Ek, we
obtain

m

m�
= 1 −

Um

2�2�
0

�

dEk�
−�

�

d�k

�k
2 + Ek

2

�k
2 + Ek

2 + E0Ek

Ek

�i�k − Ek�3 .

�5.9�

Now it is obvious that typical ��k��Ek�E0�EF, which jus-
tifies our original assumption. Performing remaining integra-
tions, we finally obtain

m�

m
= 1 +

mU

8�
. �5.10�

As it is also the case for the Coulomb interaction,17,18 the
effective mass in the NUm�1 limit does not depend on N.
Note that Eq. �5.10� is valid only for a repulsive and suffi-
ciently weak interaction �Um�1� so that mass renormaliza-
tion is still a small albeit nonperturbative effect. Notice also
that the normalization condition �5.7� was not essential: if it

is not imposed, the high-energy scale E0 is replaced by Ẽ0
= �NUm /��EF�EF. However, since the high-energy scale
drops out from the formula �5.9� for the effective mass,

changing E0 by Ẽ0 does not affect the result for m�.
Differentiating the regular part of the self-energy with re-

spect to i� and performing integrations in a way similar to
the effective-mass case, we obtain the Z factor in the NUm
�1 limit

Z = 1 −
mU

4�
. �5.11�

C. Fermi-liquid formalism in the non-pertubative regime

As we explained in Sec. V A, to obtain the effective mass
in the FL formalism, one needs to collect all direct diagrams
for �� to next-to-leading order in 1 /N. This arduous task is
simplified dramatically in the case of a momentum-
independent interaction in 2D, where diagrams with particle-
hole bubbles at p−q do not contribute to mass renormaliza-
tion. To second order in U, the leading order in N is N1=N
and next-to-leading order is N0=1. There is only one
direct, O�N0� diagram that does not contain �ph��=0,p
−q�—diagram �c� in Fig. 1. To third order in U, there are
only two inequivalent diagrams of order O�N1�, shown in
Fig. 4. One of them renormalizes the second-order particle-
particle diagram �c� while the other renormalizes the particle-
hole diagram �e� in Fig. 1. Note that the particle-hole bubbles
in both diagrams are integrated over internal four momenta
and, hence, do contribute the angular dependence of ��. To
fourth order in U, there are four inequivalent diagrams, also

= + + +...

FIG. 3. Self-energy in the large-N limit. The dashed line is an
effective interaction given by Eq. �5.5�.
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shown in Fig. 4. It is easy to see that the overall combinato-
rial coefficients for particle-particle and particle-hole dia-
grams of order Un are both equal to n−1. Collecting all
orders, we obtain for the angular-dependent part of ��

���,��
� �pF,qF� = − U2������� d3l

�2��3 �Gp+lGq+l

+ Gp+lGq−l��
n=0

�

�n + 1��NU�ph�l��n

=− U2������� d3l

�2��3 �Gk+lGq+l

+ Gk+lGq−l�
1

�1 − NU�ph�l��2 , �5.12�

where we added the O�U2� particle-hole diagram, which
does not contribute to mass renormalization, to the right-
hand side of Eq. �5.12�. The result for ���,��

� is greatly sim-
plified in the limit of NUm�1. As in the previous section,
we replace �ph�l� by its large-momentum asymptotic form
Eq. �5.6� and expand the products of Green’s functions as

Gp+lGq+l =
�vFl�2

�i�l − El�4cos �pl cos �ql + ¯ ,

Gp+lGq−l = −
�vFl�2

��l
2 + El

2�2cos �pl cos �ql + ¯ , �5.13�

where ¯ stand for angular-independent and higher order
terms, �k1k2

� � �k1 ,k2�, and, as before, El= l2 /2m. After
trivial angular integration and some simplifications, we
obtain

���,��
� �pF,qF� = − ������

U2kF
2

�2 cos �pq�
0

�


dEl�
−�

�

d�l

i�lEl
2

�i�l − El�2

1

��l
2 + El

2 + E0El�2

=������cos �pq
U

2N
. �5.14�

Substituting Eq. �5.14� into the formula for the effective
mass �Eq. �5.1��, we reproduce the result of the perturbation
theory, Eq. �5.10�.

To reproduce the perturbative result for Z, one needs to
evaluate ���,��

� �pF ,q� for q away from the FS. We did not
attempt to do this.

VI. CONCLUSIONS

In this paper, we analyzed an interplay between high- and
low-energy contributions to two fundamental Fermi-liquid
parameters—the quasiparticle Z factor and effective mass
m�—obtained in two different ways: via a general FL formal-
ism and via a diagrammatic perturbation theory. In both
cases, Z and m� are extracted from the fermionic self-energy.
In the FL formalism, the self-energy 	FL is obtained from the
Pitaevskii identities for the derivatives of the Green’s func-
tions �following from the particle number conservation and
Galilean invariance� and expressed via an antisymmetrized
FL vertex ��. In the perturbation theory, the self-energy 	pert
is obtained in series of nonantisymmerized interaction
U��k��. To any order in U��k��, the two self-energies are not
identical when expressed in terms of fermionic Green’s func-
tions but certainly yield the same expressions for m� /m and
Z. We found, however, that identical results for m� in the two
approaches are determined by different regions of energies.
Whereas the FL-theory m� comes from low energies, i.e.,
from the vicinity of the Fermi surface, the perturbative m�

includes, in general, contributions from both low and high
energies. Only the sum of the two contributions coincides
with the FL result for m�. We found that the equivalence of
m� /m in the two approaches is based on a particular identity
for the products of fermionic Green’s functions, Eq. �4.6�
which relates the low- and high-energy contributions to the
effective mass. On the other hand, renormalization of Z
comes only from high-energy fermions in both approaches.
We obtained the expression for Z in a 2D Fermi liquid with
short-range interaction.

We also analyzed the difference between the FL- and per-
turbative approaches for a system of interacting fermions
with SU�N� symmetry in the limit of N�1. We showed that
mass renormalization in the diagrammatic formalism comes
from high energies and that equivalent expressions for the
effective mass are obtained in the two formalisms only if one
collects next-to-leading terms in the 1 /N expansion for ��.
We obtained a closed expression for �� for the case of
momentum-independent interaction in 2D.

The lesson to be learned from this consideration is that

p p

q q
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p p

q q

p p

q q

2x

p

q

2x

q

p

p p

q q

p p

q q
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FIG. 4. Diagrams for the Fermi-liquid vertex ���,��
� �p ,q� in the

large-N limit and to fourth order in the momentum-independent
interaction U=const. We select only those diagrams which contrib-
ute to mass renormalization in 2D. Note that particle-particle and
particle-hole diagrams differ by the directions of arrows on bottom
fermionic lines.
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one has to be careful with eliminating high-energy fermions
from the problem. While it is tempting to reduce the problem
to that of low-energy fermions with an effective interaction
and consider only the low-energy contribution to m� /m, this
would give an incorrect result for m�. The reason is that, in
the process of integrating out high-energy fermions, the qua-
siparticle mass changes from its bare value, m, to a new one,
mB. The difference mB /m−1 comes from high energies. Only
the combined effect of high-energy renormalization, which
replaces m by mB, and low-energy renormalization, which

involves only the Fermi-surface states, yields the agreement
with the FL theory.
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